27-5

ELECTRIC POTENTIAL DIFFERENCE

Work and Charges

- Work is required to move a charge in an electric field
- The electric potential energy describes the amount of stored energy a charge has when moved by an electrostatic force.

Electric Potential Difference

- Work done to move a unit charge from one point to another

High PE

$$
V=\frac{W}{q} \quad \begin{aligned}
& V: \text { potential difference [volts] } \\
& W: \text { work [Joules] } \\
& q: \text { charge [Coulombs] }
\end{aligned}
$$

Low PE

Electron-volts

- Energy needed to move an elementary charge through a potential difference of 1 V

$$
1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}
$$

Example Problem

In an electric field, 0.90 joules of work is required to bring 0.45 coulombs of charge from point A to point B. What is the electric potential difference between point A and $B 2$

$$
\begin{aligned}
& W=0.90[\mathrm{~J}] \\
& q=0.45[\mathrm{C}] \\
& V=?
\end{aligned}
$$

Parallel Plates

- Electric field strength
- Strength of the field is the same
E : electric field strength [N / C]
V : potential difference [volts] d : separation distance [m]
between the plates
- How are the units equivalent?

$$
\frac{N}{C}=\frac{N \times m}{C \times m}=\frac{J}{C \times m}=\frac{\frac{J}{C}}{m}=\frac{V}{m}
$$

Equipotential Lines

- Lines of equal electrical potential
- Always cross electrical field lines at right angles
- No work will be done if a charged particle stays on the

THE END

Thank you for listening !

