Regents Physics

Work and Power

APlusPhysics

Objectives

- Define work and Power.
- Calculate the work and the power.

What is Work?

- You do work on an object when you move it.
- When you do work on an object, you transfer energy from one object to another.
- Work is the process of moving an object by applying a force.

Examples of Work

- A girl struggles to push her stalled car, but can't make it move.
\rightarrow Since car isn't moving, no work is done.
- A child in a ghost costume carries a bag Halloween candy across the yard.
\rightarrow Forces of the child's arms on the bag don't cause the displacement, therefore no work is being done by the child.

Calculating Work

$$
\begin{aligned}
W=F d & \bullet W \text { is the work done in Joules (} \mathrm{N} \cdot \mathrm{~m} \text {) } \\
& \bullet F \text { is the force applied in Newtons } \\
& \bullet d \text { is the object's displacement in meters }
\end{aligned}
$$

- Only the force in the direction of the displacement counts.
- When force and displacement aren't in the same direction, we must take the component of force in the direction of the displacement.

$$
W=F \cos \theta \cdot d
$$

Sample Problem-1

An appliance salesman pushes a refrigerator 2.0 meters across the floor by applying a force of 200 N. Find the work done.

Sample Problem 2

 You push a crate up a ramp with a force of 10 N . Despite your pushing, however, the crate slides down the ramp a distance of 4.0 m . How much work did you do?
What is Power?

- Power is the rate at which work is done.

$$
P=\frac{W}{t}
$$

- Units are Joules/second, or Watts (W)
- It is possible to do the same amount of work, but have different power outputs, if time is different.

Sample Problem 3

Rob and Peter move a sofa 3.0 meters across the floor by applying a combined force of 200 N horizontally.
If it takes them 6.0 seconds to move the sofa, what amount of power did they supply?

Kevin then pushes the same sofa 3.0 meters across the floor by applying a force of 200 N .
Kevin, however, takes 12 seconds to push the sofa. What amount of power did Kevin supply?

Alternate Power Calculations

$$
\begin{aligned}
P= & \frac{W}{t}=\quad=F v \\
& \text { Sample Problem } 4
\end{aligned}
$$

Motor A lifts a 5000 N steel crossbar upward at a constant $2.0 \mathrm{~m} / \mathrm{s}$.
Motor B lifts a 4000 N steel support upward at a constant $3.0 \mathrm{~m} / \mathrm{s}$.
Which motor is supplying more power?

