Regents Physics

Newton's 2nd Law

APlusPhysics

Objectives

- Explain the relationship between acceleration, net force, and mass of an object.
- Apply Newton's $2^{\text {nd }}$ Law to solve a variety of problems.
- Understand the difference between mass and weight.
- Understand the conditions required for static equilibrium.

Newton's $2^{\text {nd }}$ Law of Motion

the acceleration of an object is in the direction of and directly proportional to the net force applied, and inversely proportional to the object's mass.

Newton's $1^{\text {st }}$ Two Laws Compared

Newton's $1^{\text {st }}$ Law
An object at rest will remain at rest, and an object in motion will remain in motion, at constant velocity and in a straight line, unless acted upon by a net force.

Newton's $2^{\text {nd }}$ Law the acceleration of an object is in the direction of and directly proportional to the net force applied, and inversely proportional to the object's mass.

$$
\text { subset of } 2^{\text {nd }} \text { law }
$$

Applying Newton's $2^{\text {nd }}$ Law

1. Draw a free body diagram.
2. For any forces that don't line up with the x - or y axes, break those forces up into components that do lie on the x - or y-axis.
3. Write expressions for the net force in x - and y directions. Set the net force equal to ma, since Newton's $2^{\text {nd }}$ Law tells us that $m a=F$.
4. Solve the resulting equations.

Sample Problem

Two forces, F_{1} and F_{2}, are applied to a block concurrently on a frictionless, horizontal surface as shown below.

cart

If the mass of the block is 5.0 kg , what is the acceleration of the block?

Mass vs. Weight

- Mass is the amount of "stuff" something is made up of. Mass is inertia. It remains constant.
- Weight (mg) is the force of gravity on an object.
- Weight varies with gravitational field strength (g).

Static Equilibrium

- Static equilibrium occurs when there is no net force on an object (therefore acceleration is zero).

