Regents Physics

Free Fall and

Projectile Motion

APlusPhysics

Objectives

- Use kinematic equations to solve problems for objects moving at a constant acceleration in free fall.
- Sketch the theoretical path of a projectile.
- Recognize the independence of the vertical and horizontal motions of a projectile.
- Solve problems involving projectile motion for projectiles fired horizontally and at an angle.

Air Resistance

- If we drop a ball and a sheet of paper simultaneously from the same height, it is obvious that they don't fall at the same rate.
- If we could remove all the air from the room, however, we would find that they fall at the same rate.
- We will analyze the motion of objects by neglecting air resistance (a form of friction) for the time being.

Acceleration Due to Gravity

- Near the surface of Earth, objects accelerate downward at a rate of $9.8 \mathrm{~m} / \mathrm{s}^{2}$.
- We call this acceleration the acceleration due to gravity (g).
- More accurately, it is called the gravitational field strength.
- As you move further away from Earth, g decreases.

What is free fall?

- A free falling body is any object whose motion is affected upon only by gravity and moves vertically.

Objects Falling From Rest

Objects Launched Upward

What is a projectile?

- A projectile is an object that is acted upon only by gravity.
- In reality, air resistance plays a role, but similar to free fall, we will neglect air resistance in this course.
- Typically, projectiles are objects launched at an angle.
- Projectiles launched at an angle move in parabolic arcs.

Sample Problem - falling

How far will a brick starting from rest fall freely in 3.0 seconds?
[Neglect air resistance.]

Independence of Motion

- Projectiles launched at an angle have motion in two dimensions
- Vertical - like free fall
- Horizontal - 0 acceleration
- Vertical motion and horizontal motion can be treated separately!

Sample - Horizontal Launch

- Fred throws a baseball $42 \mathrm{~m} / \mathrm{s}$ horizontally from a height of 2.0 m . How far will the ball travel before it reaches the ground?
\downarrow Vert
$v_{i}=$
v_{f}
$d=$
$a=$
$t=F I N D$

$$
\begin{aligned}
d & =v_{i} t+\frac{1}{2} a t^{2} \\
d & =\frac{1}{2} a t^{2} \\
t & =\sqrt{\frac{2 d}{a}}= \\
& =
\end{aligned}
$$

\rightarrow Horz	
$v_{i}=$	
$v_{f}=$	
$d=F I N D$	$d=\bar{v} t$
$a=$	$d=$
$t=$	$=$

Sample Problem - Human Cannonball

Herman the human cannonball is launched from level ground at an angle of 30° above the horizontal with an initial velocity of $26 \mathrm{~m} / \mathrm{s}$.

How far does Herman travel horizontally before reuniting with the ground?

Herman is launched from level ground at an angle of 30° above the horizontal with an initial velocity of $26 \mathrm{~m} / \mathrm{s}$. How far does Herman travel horizontally before reuniting with the ground?
\uparrow Vert
$v_{i}=$
$v_{f}=$
$d=?$
$a=$
$t_{u p}=$ FIND

$$
\begin{aligned}
& v_{f}=v_{i}+a t \\
& t=\frac{v_{f}-v_{i}}{a} \\
& t= \\
& t_{\text {TOT }}=2 t=
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow \text { Horz } \\
& v_{i}= \\
& v_{f}= \\
& d=F I N D \\
& a= \\
& t= \\
& d=v_{i} t+\frac{1}{2} a t^{2} \\
& d=\bar{v} t \\
& d=
\end{aligned}
$$

