Regents Physics

Kinematic Equations

APlusPhysics

Objectives

- Use kinematic equations to solve problems for objects moving at a constant acceleration in a straight line.

Problem-Solving Toolbox

- Graphs are not always the most effective way of understanding motion.

Variable	Value
v_{i}	Initial velocity
v_{f}	Final velocity
d	Displacement
a	Acceleration
t	Time

- Kinematic equations help us solve for five key variables describing the motion of an object in a single dimension.

Kinematic Equations

$$
\begin{aligned}
& v_{f}=v_{i}+a t \\
& d=v_{i} t+\frac{1}{2} a t^{2} \\
& v_{f}^{2}=v_{i}^{2}+2 a d
\end{aligned}
$$

Problem Solving Steps

1. Label your analysis for horizontal (x-axis) or vertical (y-axis) motion.
2. Choose a direction as positive (typically the direction of initial motion).
3. Create a motion analysis table.
4. Fill in your givens.
5. Once you know three items in the table, solve for unknowns.
6. Verify that your solution makes sense.

Sample Problem - Horizontal

A race car starting from rest accelerates uniformly at a rate of 4.9 meters per second². What is the car's speed after it has traveled 200 meters?

Sample Problem - Vertical

An astronaut standing on a platform on the Moon drops a hammer. If the hammer falls 6.0 meters vertically in 2.7 seconds, what is its acceleration?

Sample Problem - 2 Steps

A car traveling on a straight road at $15 \mathrm{~m} / \mathrm{s}$ accelerates uniformly to a speed of $21 \mathrm{~m} / \mathrm{s}$ in 12 seconds. Find the total distance traveled by the car in this 12-second time interval.
\rightarrow Horz
$v_{i}=$
$v_{f}=$
$d=F I N D$
$a=$
$t=$ Can't find " d " directly, find " a " first.

$$
\begin{aligned}
& v_{f}=v_{i}+a t \\
& a=\frac{v_{f}-v_{i}}{t}= \\
& d=v_{i} t+\frac{1}{2} a t^{2}=
\end{aligned}
$$

